Menoufiya University Faculty of Engineering Shebin El- Kom Second Semester(June) Examination Academic Year: 2013-2014 Date: 14/6/2014

Dept.: Production Engineering Year : Post-Graduate Diploma Subject: Robotics Code : PRE 514 Time Allowed: 3 hours Total Marks : 100 Marks

Allowed Tables and Charts: None

Examiner: Dr/ Mohamed Hesham Belal.

Answer All The Following Questions:

Question No.(1):

[25 Mark]

- (a)- [10] -Define the terms: Robots and Robotics, then explain briefly the main parts of an industrial robot.
- (b)- [15] -A three axes planar robot of a base frame (B) and of a gripper (G) is utilized to pick up a work piece (W) from the moving conveyor as shown in Fig.(1). The work piece and the end-effector are monitored by camera (C) while the controls of joints are performed based on the parameters defined in the base frame. If at certain instant the following matrices are:

	0.5	0	0.866	5			0.866	0	0.5	2		0.707	0	0.707	20
, C	0	1	0	0		W	0	1	0	0	G	0	1	0	0
$A_{\scriptscriptstyle B}$ =	-0.866	0	0.5	3	,	$A_c =$	-0.5	0	0.866	4	, A_c° =	-0.707	0	0.707	30
	0	0	0	1			0	0	0	1		0	0	0	1

Compute and explain the physical meaning of the H.T.M. representing the orientations and locations of the moving work piece (W) : 1- w.r.t. the base frame (B), and 2- w.r.t. the gripper (G).

Question No.(2):

[25 Mark]

- (a)- [8] -Robotic systems are generally classified to six groups according to different views. Investigate briefly.
- (b)- [17] For the 4-DOF- manipulator arm shown in Fig.(2).
 - 1- Assign frames and tabulate the joint-link parameter, (Put $\theta_2 = 90^{\circ}$),
 - 2- Determine the transformation matrices relating successive links,
 - 3- Obtain the orientation and position of the end-effector relative to the base,
 - 4- Check the correctness of the results and describe it at the home position,
 - 5- Compute the orientation and position of the end-effector if the joint variable vector is : $q = [60^{\circ} 400 \text{ mm} 500 \text{ mm} 45^{\circ}]^{\mathsf{T}}$ with : L₁ = 300 mm, L₂= 200 mm.

Question No.(3):

[25 Mark]

(a)- [8] - Compare between the rigid domain and flexible domain for dynamic analysis of performance of industrial robot.

- (b)- [17] -Two link planar manipulator in rigid domain, as shown in Fig.(3), connected by the three powered joints for the flexible end-effector.
 - Calculate the equivalent actuating moments at the joints to keep the manipulator in static equilibrium, 2)- Derive the equations of motion of the system assuming small vibration about a reference position,
 - 3)- If the position of the end-effector is given by $P = [P_x P_y]^T$, Find the magnitude of angle θ_2 in terms of the link length and the position of the end-effector.

Question No.(4):

[25 Mark]

(a)- [8] -List the features of the basically three types of power sources for robots.

(b)- [17] - A 3- DOF robotic sewing system consist of cloth panel of mass (m_s), robotic hand of mass (m_h) and a robot system formed from of mass joined (m_r) with robotic hand of mass moment inertia (J_r). Applied force (F) by a feeder element on the cloth panel and driving torque (T_r) acting on robotic hand is shown in Fig.(4). The flexibility of various elements is modeled by discrete springs of constants (K_c, K_r). The energy dissipation is modeled by a linear viscous damping constant (C) as indicated.

Given that: $x_r = r \phi_r$, m_s , m_h , m_r , J_r , K_c , K_r , C, F, T_r.

1- Derive the equations of motion and hence express the eigenvalue problem.

2- Is the system has rigid body mode? Prove your answer. And then sketch the expected mode shapes.

With my best wishes

This exam measure the following ILOs													
Question No.	Q1-a	Q2-a	Q3-a	Q4-a	Q1-b	Q2-b	Q3-b	Q4-b	Q1-b	Q2-b	Q3-b	Q4-b	
	a-2	a-3	a-4	a-2	b-2	b-5	b-2	b-5	c-1	c-2	c-1	c-2	
Skills	Skills Knowledge & Understand						ectual		Professional				

<u>(2/2)</u>